Moser's C-Line, the Apparent Multiplicity m' and Modules in Descriptions of $\mathrm{L}-\mathrm{Ta}_{2} \mathrm{O}_{5}$ and Related Structures

Bengt-Olov Marinder
Department of Inorganic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden

Received January 5, 2001; in revised form March 22, 2001; accepted March 26, 2001; published online June 1, 2001

Abstract

Several l- $\mathrm{Ta}_{2} \mathrm{O}_{5}$ related phases, often classified as type I and type II structures, are described as composed of elements of α and $\beta-U_{3} O_{8}$ type. Published powder patterns are reindexed in a four-index notation using a modulation vector $q=q b^{*}$. From the so-called C-line a relation between the apparent multiplicity m^{\prime} and q is obtained: $m^{\prime}=1 /|2-3 q|$. A modified $(A B)$ module, based on the $\alpha-\mathrm{U}_{3} \mathrm{O}_{8}$ structure, is given and used in modeling the structures. It is shown that the proportion of metal atom sites with octahedral surrounding, $f_{\text {oct }}$, is linearly related to \boldsymbol{q}. © 2001 Academic Press

Key Words: $\alpha-\mathrm{U}_{3} \mathrm{O}_{8} ; \quad \beta-\mathrm{U}_{3} \mathrm{O}_{8} ;$ C-line; $\mathrm{L}^{2} \mathrm{Ta}_{2} \mathrm{O}_{5} ;$ modules; modulated structures; apparent multiplicity.

INTRODUCTION

In his studies of $\mathrm{L}-\mathrm{Ta}_{2} \mathrm{O}_{5}$ by X-ray powder diffraction techniques, Moser in 1965 used the so-called C-line, a reflection occurring between 2Θ-values of about 25° and 27° for $\mathrm{CuK} \alpha_{1}$ radiation, to characterize the various $\mathrm{Ta}_{2} \mathrm{O}_{5}$ phases observed (1). This reflection was among those that changed position markedly, depending on the kind of thermal treatment that the investigated sample had undergone.

Later, several investigators also used this reflection to characterize their samples (2-8), especially in the system $(1-x) \mathrm{Ta}_{2} \mathrm{O}_{5} \cdot x \mathrm{WO}_{3}(0 \leq x \leq 0.267)$. This system was considered by Papiernik et al. $(9,10)$ to belong to a type I homologous series, $M_{2 n-2}^{[7]} M_{n}^{[6]} X_{8 n-6}$, with $M_{3} X_{8}$ as limiting structure, while phases in the $\mathrm{ZrO}_{2}-\mathrm{UF}_{4}$ and $\mathrm{ZrO}_{2}-\mathrm{ZrF}_{4}$ were described as a type II homologous series, $M_{2 n-2}^{[7]} M_{n-2}^{[6]} X_{8 n-10}$, also with $M_{3} X_{8}$ as a limit. Several Xray powder patterns of type II phases were given and indexed by these authors. They also defined the concept of apparent and real multiplicities, m^{\prime} and m. Marinder in 1990 showed how several type I and type II phases could be described by use of so-called A and B modules (11).

Thompson et al. in 1991 studied part of the system $\mathrm{ZrO}_{2}-\mathrm{ZrF}_{4}$, namely the compound $\mathrm{ZrO}_{2-x} \mathrm{~F}_{2 x}$, with $0.698 \leq x \leq 0.714$. Instead of describing it as a series of line phases, with intermediary compositions resulting from in-
tergrowth of the line phases on the unit cell level, they preferred to describe $\mathrm{ZrO}_{2-x} \mathrm{~F}_{2 x}$ as an incommensurately modulated structure with the composition-dependent primary modulation wave vector $\mathbf{q}=x \mathbf{b}^{*}$ (12).

In 1992 Schmid et al. showed how the system $(1-x) \mathrm{Ta}_{2} \mathrm{O}_{5} \cdot x \mathrm{WO}_{3}$ could be treated as a solid-solution phase by using a four-index notation in their X-ray powder diffraction and electron microscopy diffraction studies (7). Thus it was found that

$$
\begin{equation*}
\mathbf{d}^{*}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}+m \mathbf{q} \tag{1}
\end{equation*}
$$

where $\mathbf{a}^{*}, \mathbf{b}^{*}$, and \mathbf{c}^{*} are the reciprocal lattice vectors of an underlying orthorhombic parent structure and $\mathbf{q}=q \mathbf{b}^{*}$ is a modulation vector, could be used for indexing any given reflection. They noted that Moser's C-line was an $1,1,0,-3$ reflection in this four-index notation. They also noted (like the authors of (3) and (8)) that the C-line was on the origin side of the very strong reflection $1,1,0,0$ (see Fig. 1).

In this paper we will consider the connection between the apparent multiplicity m^{\prime} as defined by Papiernik et al. $(9,10)$ and the magnitude of $\mathbf{q} / \mathbf{b}^{*}$ as given by Schmid et al. (7) and by Thompson et al. and Withers et al. (12) for phases of types I and II, as mentioned above. We have indexed published powder diffraction data in four-index notation, found the q values by a least-squares refinement procedure, and then calculated the m^{\prime} values. A modified $(A B)$ module based on the $\alpha-\mathrm{U}_{3} \mathrm{O}_{8}$ structure is given, which has been used in modeling phases of structure types I and II, which are here described by formulas slightly different from to those in (9). Finally, we show how the proportion of metal sites with octahedral character is related to q for structures of types I and II.

THE \boldsymbol{m}^{\prime} FORMULA

Figure 1 schematically shows an [001] subcell zone-axis diffraction pattern of an $\mathrm{L}-\mathrm{Ta}_{2} \mathrm{O}_{5}$-related structure of type I with reciprocal-lattice vectors from one of the parent structures discussed by Lehovec (13). Note the position of

FIG. 1. A schematic diagram of part of an [001] subcell zone-axis diffraction pattern of an $\mathrm{L}-\mathrm{Ta}_{2} \mathrm{O}_{5}$-related structure. A four-index notation (h, k, l, m) is used for indexing the reflections. Δ is the distance along \mathbf{b}^{*} between the the C line $1,-1,0,3$ and the strong $1,1,0,0$ reflection.
the C-line $1,-1,0,3$ or $1,1,0,-3$ at a lower diffraction angle than the strong reflection $1,1,0,0$ or $1,-1,0,0$. The reciprocal distance Δ shown in the figure as the distance between the $1,-1,0,3$ and the $1,1,0,0$ reflections along the \mathbf{b}^{*} direction is given by
$\Delta=|(1,1,0,0)-(1,-1,0,3)|=|(0,2,0,-3)|=(2-3 q) b^{*}$,
and the apparent multiplicity as defined by Papiernik et al. $(9,10)$ is then given by

$$
\begin{equation*}
m^{\prime}=b^{*} / \Delta \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
m^{\prime}=1 /|2-3 q| . \tag{3}
\end{equation*}
$$

For $q>2 / 3$ (type II structures) it can be shown that the position of the $1,-1,0,3$ reflection is beyond $1,1,0,0$, cf. densitometer traces from XRD Guinier exposures in Ref (12). Thus the absolute value has to be used in Eq. [3]. For $q=2 / 3$ it is found that the position of the $1,-1,0,3$ reflection coincides with that of $1,1,0,0$, giving $\Delta=0$. In this case Δ is taken as the distance between the reciprocal vectors $(1,1,0,0$,$) and (1,1,0,-1)$:

$$
\Delta=|(1,1,0,0)-(1,1,0,-1)|=|(0,0,0,1)|=q b^{*}
$$

or

$$
m^{\prime}=1 / q
$$

or

$$
m^{\prime}=1.5 .
$$

Note first, that the C-line $1,1,0,-3$ occurs between d values of about 3.30 and $3.60 \AA$ in structures of type I . Sometimes it is too weak to be observed, as in the $\mathrm{T}-\mathrm{Nb}_{2} \mathrm{O}_{5}$ pattern (14). Second, the weak reflection $1,1,0,-1$ and the

FIG. 2. (a) The structure of the $\beta-\mathrm{U}_{3} \mathrm{O}_{8}$ subcell is shown as built up of A and B modules. Note that B and the sequence $B A B$ form structures of pseudo-Pbmm symmetry, with compositions $M_{3 n-1} X_{8 n-3}, n=1$ and 2 , respectively. A and the sequence $A B A$ form structures of the same symmetry, with compositions $M_{3 n-2} X_{8 n-5}, n=1$ and 2, respectively. (b) The crystal structure of $\alpha-\mathrm{U}_{3} \mathrm{O}_{8}$ shown as being built up of $(A B)$ modules of pseudo-C2mm symmetry.
very weak reflection $0,2,0,-2$ are observed in patterns of both type I and type II structures. The first weak reflection, $1,1,0,-1$ occurs at about $d=5.10$ and $5.85 \AA$ in type I structures and is identical to the second weak reflection, at about $d=5.70$ and $5.95 \AA$, in type II structures. The $0,2,0,-2$ reflection is the second weak one, at about $d=4.70$ and $5.00 \AA$, in type I structure patterns, whereas it occurs at about $d=6.25$ and $6.80 \AA$ as the first weak reflection in those of type II structures.

TABLE 1
Apparent Multiplicity Values m^{\prime} for Some Type I and II Structures, Calculated from \boldsymbol{q} Values Derived from Published X-Ray Powder Diffraction Data

Compounds modules	Ref.	X / M	q	$\begin{gathered} m^{\prime}= \\ 1 /\|2-3 q\| \end{gathered}$	m	$f_{\text {oct }}$	Remarks
$\mathrm{CuO} \cdot 5 \mathrm{Ta}_{2} \mathrm{O}_{5}$	(22)	2.364	0.6317(6)	9.5(2)	19	0.263	Type I, $m=8+11$, see Table $2 \mathrm{a}: n=2$ and
$4(A B)+6 A+10 B$							3. The model is monoclinic and C-centered as is also found from systematic absences in the powder pattern.
$\mathrm{T}-\mathrm{Nb}_{2} \mathrm{O}_{5}$ (Pbam)	$(14,16)$	2.500	0.6249 (5)	7.99(8)	8	0.250	Type I, see Table 2a: $n=2$, c.f. Fig. 3a. The real structure is reported with interstitial niobium atoms. As regards $f_{\text {oct }}$, see text.
$2(A B)+2 A+4 B$							
$\mathrm{L}-\mathrm{Ta}_{2} \mathrm{O}_{5}(p m)$	$(4,20)$	2.500	$0.6366(5)$	11.1(2)	11	0.273	Type I, see Table 2a: $n=3$. The model is orthorhombic.
$2(A B)+4 A+6 B$							
$\mathrm{Ta}_{30} \mathrm{~W}_{2} \mathrm{O}_{81}$ (Pbam)	$(4,20)$	2.531	0.6251(4)	8.03(7)	8	0.250*	Type I, see Table 2a: $n=2 . \mathrm{Ta}_{74} \mathrm{~W}_{6} \mathrm{O}_{203}$ is isotypic. The structure has oxygen vacancies.
$2(A B)+2 A+4 B$							
$\begin{aligned} & \mathrm{Ta}_{22} \mathrm{~W}_{4} \mathrm{O}_{67}(C 112 / m) \\ & 4(A B)+2 A+6 B \end{aligned}$	$(4,20)$	2.577	0.6156(3)	6.52(4)	13	0.231*	Type I, $m=5+8$, see Table 2 a : $n=1$ and 2 . The model is monoclinic and C-centered, as is the real structure which contains oxygen vacancies as well.
$4(A B)+2 A+6 B$							
$\mathrm{U}_{5} \mathrm{O}_{12} \mathrm{Cl}(\mathrm{Pbmm})$	(21)	2.600	0.6000	5	5	0.200	Type I, see Table 2a: $n=1$ No standard deviations, as no powder data available. In the real structure all U -atoms are seven-coordinated, i.e., $f_{\text {oct }}=0$.
$2(A B)+2 B$							
$\mathrm{Nb}_{3} \mathrm{O}_{7} \mathrm{~F}(\mathrm{hp})(\mathrm{Cmmm})$	$(23,24)$	2.667	0.667(2)	1.500(4)	3	0.333*	Type I and II, see Table 2a and b: $n=\infty$. The compound represents the subcell of $\beta-\mathrm{U}_{3} \mathrm{O}_{8}$ type.
$2 A+2 B$							
$\mathrm{Zr}_{19} \mathrm{U}_{10} \mathrm{O}_{38} \mathrm{~F}_{40}$	(9)	2.690	0.691(1)	13.7(4)	29	0.241	Type II, $m=13+16$, see Table $2 \mathrm{~b}: n=4$
							metry. It is C-centered as is also found from systematic absences in the powder pattern.
$\mathrm{Zr}_{15} \mathrm{U}_{8} \mathrm{O}_{30} \mathrm{~F}_{32}$	(9)	2.696	0.694(2)	12.1(5)	23	0.217	Type II, $m=10+13$, see Table $2 \mathrm{~b}: n=3$ and 4. The model has monoclinic symmetry. It is C-centred as found from systematic absences in the powder pattern.
$4(A B)+14 A+10 B$							
$\mathrm{Zr}_{10} \mathrm{O}_{13} \mathrm{~F}_{14}$	(10)	2.700	0.699(1)	10.3(2)	10	0.200	Type II, see Table 2 b : $n=3$.
$2(A B)+6 A+4 B$							
$\mathrm{Zr}_{17} \mathrm{O}_{22} \mathrm{~F}_{24}$	(10)	2.706	0.706(1)	8.5(2)	17	0.176	Type II, $m=7+10$, see Table 2 b : $n=2$ and 3. The model has monoclinic symmetry. It is C-centered as is also found from systematic absences in the powder pattern.
$4(A B)+10 A+6 B$							
$\mathrm{Zr}_{11} \mathrm{U}_{6} \mathrm{O}_{22} \mathrm{~F}_{24}$	(9)	2.706	0.706(1)	8.5(2)	17	0.176	As above.
$4(A B)+10 A+6 B$							
$\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$ (Pbam)	(17)	2.714	0.714(1)	7.02(7)	7	0.143*	Type II, see Table 2b: $n=2$ c.f. Fig. 3b.
$2(A B)+4 A+2 B$							
$\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$	(10)	2.714	0.714(2)	7.0(2)	7	0.143	As above.
$2(A B)+4 A+2 B$							

Note. Real multiplicities m are also given, as well as the ratio $f_{\text {oct }}=\Sigma M^{[6]} /\left(\Sigma M^{[6]}+\Sigma M^{[7]}\right)$ in the unit cell according to the model (observed $f_{\text {oct }}$ values are marked with an asterisk). $A=M^{[7]} X_{3}, B=M^{[7]} M^{[6]} X_{5}$, and $(A B)=M_{3}^{[7]} X_{8}$.

THE T-Nb $\mathbf{N}_{2} \mathrm{O}_{5}$ AND $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$ STRUCTURES

Structures of types I and II have been described as being built up by modules in various combinations (11). The subcell of $\beta-\mathrm{U}_{3} \mathrm{O}_{8}$ is given by a sequence like $A B A \ldots$, where
A has $M X_{3}$ composition with a seven-coordinated metal atom, $M^{[7]}$, whereas B has $M_{2} X_{5}$ composition with one seven-coordinated and one six-coordinated metal atom, $M^{[7]}$ and $M^{[6]}$ (see Fig. 2a). The $\alpha-\mathrm{U}_{3} \mathrm{O}_{8}$ structure is described by the sequence $A A^{\prime} B B^{\prime} A \ldots\left(A\right.$ and A^{\prime} are related

FIG. 3. (a) The crystal structure of $\mathrm{T}-\mathrm{Nb}_{2} \mathrm{O}_{5}$ shown as being built up of A, B and $(A B)$ modules or as strips of structure of pseudo- $C 2 m m$ symmetry of $M_{3} X_{8}$ composition, and of pseudo- $P b m m$ symmetry of $M_{5} X_{13}$ composition. (b) The crystal structure of $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$ shown as built up of A, B, and ($A B$) modules or as strips of structure of pseudo- $C 2 m m$ symmetry of $M_{3} X_{8}$ composition and pseudo- Pbmm symmetry of $M_{4} X_{11}$ composition.
through a mirror plane, as are B and $\left.B^{\prime}\right)$. It is found that this structure is better described by a somewhat modified module called $(A B)$, shown in Fig. 2b, where the left and right part of the module are related through a glide perpendicular to the plane of the paper. The composition of $(A B)$ is $M_{3} X_{8}$, with three seven-coordinated metal atoms. This yields a structure model of $\alpha-\mathrm{U}_{3} \mathrm{O}_{8}$ that can be denoted as $(A B)(A B)^{\prime}(A B) \ldots$, where all the U atoms are seven-coordinated, as found from a single-crystal structure determination (15).

We will demonstrate the use of this module by describing two structures, $\mathrm{T}-\mathrm{Nb}_{2} \mathrm{O}_{5}$ (16) of type I and $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}(17)$ of type II, determined by X-ray single-crystal investigations (see Table 1). The unit cell content of the first one is $\left[\mathrm{Nb}_{16} \mathrm{O}_{42}\right]^{4-}$, with $0.8 \mathrm{Nb}^{5+}$ as interstitial ions (16). The $\mathrm{Nb}_{16} \mathrm{O}_{42}$ arrangement corresponds to $2[(A B)+A+2 B]$ modules per unit cell, with $m=2 \times 1.5+2 \times 0.5+4 \times 1$, which gives $m=8$, as shown in Fig. 3a (the contributions to m by the modules A, B, and $(A B)$ are $0.5,1$, and 1.5 , respectively). The four B modules contribute four $M^{[6]}$. The

TABLE 2a
Arrangement of Modules, Composition, and Real Multiplicity \boldsymbol{m} of Type-I Structures as a Function of \boldsymbol{n}, the Number of \boldsymbol{B} Modules between the ($A B$) Modules

n	Arrangement of modules in the unit cell	Composition	Real multiplicity, $m=3 n+2$	$\begin{gathered} q_{\mathrm{I}}= \\ (2 n+1) /(3 n+2) \end{gathered}$	$\begin{gathered} f_{\text {oct }}= \\ n /(3 n+2) \end{gathered}$
-	$(A B)(A B)$	$M_{6} X_{16}\left(\alpha-\mathrm{U}_{3} \mathrm{O}_{8}\right.$ type $)$	-	-	-
1	$B / 2(A B) B(A B) B / 2$	$M_{10} X_{26}\left(\mathrm{U}_{5} \mathrm{O}_{12} \mathrm{Cl}\right)^{a}$	5	5	(${ }_{5}^{5}$)
2	$A / 2 B(A B) B A B(A B) B A / 2$	$M_{16} \mathrm{X}_{42}\left(\mathrm{~T}-\mathrm{Nb}_{2} \mathrm{O}_{5}\right)$	8	$\frac{5}{8}$	$\frac{1}{4}$
3	$B / 2 A B(A B) B A B A B(A B) B A B / 2$	$M_{22} X_{58}\left(\mathrm{~L}-\mathrm{Ta}_{2} \mathrm{O}_{5}\right)$	11	$\frac{7}{11}$	$\frac{3}{11}$
4	$A / 2 B A B(A B) B A B A B A B(A B) B A B A / 2$	$M_{28} X_{74}$	14	$\frac{9}{14}$	2
n	$\left(A_{\mathrm{n}-1} B_{n}\right) / 2(A B) \underbrace{A_{n-1} B_{n}}(A B)\left(A_{n-1} B_{n}\right) / 2$	$M_{6 n+4} X_{16 n+10}$ or	$3 n+2$	$(2 n+1) /(3 n+2)$	$n /(3 n+2)$
	$M_{3 n-1} X_{8 n-3}$	$M_{4 n+4}^{[7]} \mathrm{M}_{2 n}^{[6]} X_{16 n+10}$			
∞	$M_{3} X_{8}\left(\beta-\dot{\mathrm{U}}_{3} \mathrm{O}_{8}\right.$ type $)$	$M_{6} X_{16}\left(\beta-\mathrm{U}_{3} \mathrm{O}_{8}\right.$ type $)$	3	$\frac{2}{3}$	$\frac{1}{3}$

Note. Also shown are theoretical values of q_{I} and $f_{\text {oct }}$, the proportion of metal atoms with octahedral surroundings, according to the model. The contributions to m by A, B, and $(A B)$ are $0.5,1$, and 1.5 , respectively.
${ }^{a}$ All uranium atoms are seven-coordinated in the real structure (21).
cell content of the second structure is $\mathrm{Zr}_{14} X_{38}$ (17), whose composition relates to $2[(A B)+2 A+B]$ modules with $m=2 \times 1.5+4 \times 0.5+2 \times 1$, which gives $m=7$, as shown in Fig. 3b. Two B modules contribute one $M^{[6]}$ each. Note that both structures contain the same part of the $\alpha-\mathrm{U}_{3} \mathrm{O}_{8}$ structure, i.e., the $(A B)$ module. While $\mathrm{T}-\mathrm{Nb}_{2} \mathrm{O}_{5}$ uses the sequence $B A B$ from the $\beta-\mathrm{U}_{3} \mathrm{O}_{8}$ structure type with $\mathrm{Nb}_{5} \mathrm{O}_{13}$ composition (Table 2a), $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$ uses the sequence $A B A$, also from the $\beta-\mathrm{U}_{3} \mathrm{O}_{8}$ structure type, with $\mathrm{Zr}_{4} X_{11}$ composition (Table 2b). The two structures consist in fact of ordered intergrowths of $\alpha-\mathrm{U}_{3} \mathrm{O}_{8}$ type and parts of the $\beta-\mathrm{U}_{3} \mathrm{O}_{8}$ type structure, as discussed in Ref. (18).

The structural features of $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$ have been discussed by O'Keeffe and Hyde (19) as units of $M_{4} \mathrm{O}_{11}$ intergrown with units of $M_{3} \mathrm{O}_{8}$ of $\alpha-\mathrm{U}_{3} \mathrm{O}_{8}$ structure.

It should be noted that the arrangement of modules in type I structures in general is

$$
\ldots B(A B) A_{n-1} B_{n}(A B) B \ldots
$$

giving an X / M value less than 2.67 . For $\mathrm{T}-\mathrm{Nb}_{2} \mathrm{O}_{5}, n$ is 2 (see Table 2a). The arrangement in type II structures is

$$
\ldots A(A B) A_{n} B_{n-1}(A B) A \ldots
$$

TABLE 2b
Arrangement of Modules, Composition, and Real Multiplicity \boldsymbol{m} of Type II Structures as a Function of \boldsymbol{n}, the Number of A Modules between the ($A B$) Modules

n	Arrangement of modules in the unit cell	Composition	Real multiplicity, $m=3 n+2$	$\begin{gathered} q_{\mathrm{I}}= \\ (2 n+1) /(3 n+1) \end{gathered}$	$\begin{gathered} f_{\text {oct }}= \\ (n-1) / 3 n+1 \end{gathered}$
-	$(A B)(A B)$	$M_{6} X_{16}\left(\alpha-\mathrm{U}_{3} \mathrm{O}_{8}\right.$ type $)$	-	-	-
1	$A / 2(A B) A(A B) A / 2$	$M_{8} X_{22}$	4	$\frac{3}{4}$	0
2	$B / 2 A(A B) A B A(A B) A B / 2$	$M_{14} X_{38}\left(\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}\right)$	7	$\frac{5}{7}$	$\frac{1}{7}$
3	$A / 2 B A(A B) A B A B A(A B) A B A / 2$	$M_{20} X_{54}$	10	$\frac{7}{10}$	$\frac{1}{5}$
4	$B / 2 A B A(A B) A B A B A B A(A B) A B A B / 2$	$M_{26} X_{70}$	13	$\frac{9}{13}$	$\frac{3}{13}$
5	$A / 2 B A B A(A B) A B A B A B A B A(A B) A B A B A / 2$	$M_{32} X_{86}$	16	$\frac{11}{16}$	$\frac{1}{4}$
.			-		(\cdot. $3 n+1$
n	$\left(A_{n} B_{n-1}\right) / 2(A B) \underbrace{A_{n} B_{n-1}}(A B)\left(A_{n} B_{n-1}\right) / 2$	$M_{6 n+2} X_{16 \mathrm{n}+6}$ or	$3 n+1$	$(2 n+1) /(3 n+1)$	$(n-1) /(3 n+1)$
	$M_{3 n-2} X_{8 n-5}$	$M_{4 n+4}^{[7]} M[6]_{2 n-2} X_{16 n+6}$			
.					
∞	$M_{3} X_{8}\left(\beta-\mathrm{U}_{3} \mathrm{O}_{8}\right.$ type $)$	$M_{6} X_{16}\left(\beta-\mathrm{U}_{3} \mathrm{O}_{8}\right.$ type $)$	3	$\frac{2}{3}$	$\frac{1}{3}$

Note. Also shown are theoretical values of $q_{\text {II }}$ and $f_{\text {oct }}$, the proportion of metal atoms with octahedral surroundings, according to the model. The contributions to m by A, B and $(A B)$ are $0.5,1$ and 1.5 , respectively.
giving an X / M value larger than 2.67. For $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$, n is 2 (see Table $2 b$).

FURTHER COMPARISON BETWEEN STRUCTURES OF TYPES I AND II

Table 1 shows some $\mathrm{L}-\mathrm{Ta}_{2} \mathrm{O}_{5}$-related structures reported in the literature. Type I structures have either simple multiplicities, such as $5,8,11$, and so on, or a mixture of these multiplicities, like 13,19 , etc. $(2,3)$.

Besides $\mathrm{T}-\mathrm{Nb}_{2} \mathrm{O}_{5}$, with $m=8$, the crystal structure of an isotypic compound, $\mathrm{Ta}_{74} \mathrm{~W}_{6} \mathrm{O}_{203}(Z=0.2$, similar unit cell dimensions and the same space group Pbam, also given as $\mathrm{Ta}_{30} \mathrm{~W}_{2} \mathrm{O}_{81}(3,4)$), has been determined (20). This structure has been described as consisting of strips of structure perpendicular to \mathbf{b}, with pseudo- $C 2 \mathrm{~mm}$ and pseudo- Pbmm symmetry. The width of the pseudo- $C 2 \mathrm{~mm}$ strips is invariant with composition $M_{3} \mathrm{O}_{8}$. This corresponds to the description given above of $\mathrm{T}-\mathrm{Nb}_{2} \mathrm{O}_{5}$ as containing $(A B)$ modules of $\alpha-\mathrm{U}_{3} \mathrm{O}_{8}$ structure type. The width and the composition of the pseudo-Pbmm strips are given by the formula $M_{3 n-1} \mathrm{O}_{8 n-3}, n=1,2,3 \ldots$ (cf. Table 2a, where the composition of the structure between the $(A B)$ modules is derived, giving the same expression). $\mathrm{Ta}_{74} \mathrm{~W}_{6} \mathrm{O}_{203}$ contains only pseudo- Pbmm strips with $n=2$, i.e., $M_{5} \mathrm{O}_{13}$, to be compared with the $B A B$ sequence in $\mathrm{T}-\mathrm{Nb}_{2} \mathrm{O}_{5}$, with $\mathrm{Nb}_{5} \mathrm{O}_{13}$ composition.
$\mathrm{Ta}_{22} \mathrm{~W}_{4} \mathrm{O}_{67}(m=13)$ is an example of a structure with mixed multiplicity. As shown in Table 1 it can be thought of as composed of one structure with $2(A B)+2 A+4 B, m=8$, and one with $2(A B)+2 B, m=5$. It can be regarded as an ordered intergrowth of these two structures in the following arrangement:
$(A B) B A B(A B) B(A B) B A B(A B) B(A B) \ldots$.
or $4(A B)+2 A+6 B$, as shown in Table 1 . This structure has been described (20) as being composed of pseudo-C2mm strips of constant width (cf. the ($A B$) module) and pseudoPbmm strips of $M_{3 n-1} \mathrm{O}_{8 n-3}$ composition. Strips with $n=1$ and $n=2$ alternate in the structure. This corresponds to the B and $B A B$ sequences with $M_{2} X_{5}$ and $M_{5} X_{13}$ composition, respectively, shown in the arrangement above.

From the number and kind of modules, the amount of seven- and six-coordinated metal atoms per unit cell in these structures can be derived and is found to agree with what is known from X-ray single-crystal structure determinations. One exception, however, is the compound with $m=5$, i.e., $\mathrm{U}_{5} \mathrm{O}_{12} \mathrm{Cl}$, where all the uranium atoms are seven-coordinated (21), presumably due to the presence of the large Cl atom.
$\mathrm{T}-\mathrm{Nb}_{2} \mathrm{O}_{5}$ has been described (16) with $8 \mathrm{Nb}^{[7]}$ and $8 \mathrm{Nb}^{[6]}$, although it is stated that small changes in the oxygen positions may alter the coordination from six to
seven or vice versa. According to Table 2 a it is assumed that the four B modules contribute four $M^{[6]}$ per unit cell. In the isostructural $\mathrm{Ta}_{76} \mathrm{~W}_{6} \mathrm{O}_{203}, 4$ of 16 metal atoms are sixcoordinated according to a crystal structure determination (20). As regards $\mathrm{Ta}_{22} \mathrm{~W}_{4} \mathrm{O}_{67}$ (20), the number of six-coordinated metal atoms in the unit cell is six. This is in accordance with the model (see Table 1).

According to Papiernik et al. $(9,10)$, type II structures have either simple multiplicities m, like $3,4,7,10,13$, etc., or complex ones like $17(7+10), 23(10+13)$, and 29 $(13+16)$. Only one compound of type II seems to have been studied by X-ray single-crystal techniques, namely $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$ (17). As mentioned above, it can be thought of as built up of $(A B)$ modules intergrown with $A B A$ modules, or, to use the nomenclature of (20), of pseudo- $C 2 \mathrm{~mm}$ strips and pseudo- Pbmm strips of $\mathrm{Zr}_{4} X_{11}$ composition, corresponding to $M_{3 n-2} X_{8 n-5}$ with $n=2$ (cf. Table 2b).

Similarly, the complex $m=17$ structure in Table 1 can be thought of as composed of one structure with $2(A B)+4 A$ $+2 B, m=7$, and one with $2(A B)+6 A+4 B, m=10$. The $m=17$ structure is then an ordered intergrowth of these two in the following arrangement:
$(A B) A B A(A B) A B A B A(A B) A B A(A B) A B A B A(A B) \ldots$
or $4(A B)+10 A+6 B$, as shown in Table 1. Alternatively, it is built up of pseudo- $C 2 \mathrm{~mm}$ strips and pseudo-Pbmm strips of $M_{3 n-2} X_{8 n-5}$ composition (see Table 2b), with $n=2$ and $n=3$ alternating.

As regards the coordination of the metal atoms in $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$ (cf. Tables 1 and 2 b and Fig. 3), it is found that the modules used to describe the structure correctly represent the coordination found experimentally (17).

q AND THE PROPORTION OF METAL SITES WITH OCTAHEDRAL CHARACTER, $\boldsymbol{f}_{\text {oct }}$

According to Ref. (20), the ratio of in-plane O atoms to M atoms is $1+q$ for structures of type I. The general composition expression of a type I compound is $M_{6 n+4} X_{16 n+10}$ (see Table 2a). If this is rewritten as $M_{6 n+4} X(\text { top })_{6 n+4} X(\text { in-plane })_{10 n+6}$, we obtain $(10 n+6) /$ $(6 n+4)=1+q_{I}$ or $q_{I}=(4 n+2) /(6 n+4)$ or $(2 n+1) /$ $(3 n+2)$. Similarly, the general composition expression of a type II compound is $M_{6 n+2} X_{16 n+6}$ (see Table 2b). If this is rewritten as $M_{6 n+2} X(\text { top })_{6 n+2} X$ (in-plane $)_{10 n+4}$, we obtain $(10 n+4) /(6 n+2)=1+q_{\text {II }}$ or $q_{\text {II }}=(4 n+2) /(6 n+2)$ or $(2 n+1) /(3 n+1) . q_{\text {I }}$ and $q_{\text {II }}$ are shown in Tables 2 a and 2 b , respectively.

Let the proportion of metal sites that have octahedral character be $f_{\text {oct }}$ and assume, as in (20), a linear relationship between $f_{\text {oct }}$ and q. With data from $\mathrm{Ta}_{22} \mathrm{~W}_{4} \mathrm{O}_{67}$ and $\mathrm{Nb}_{3} \mathrm{O}_{7} \mathrm{~F}(\mathrm{hp})$ of $\beta-\mathrm{U}_{3} \mathrm{O}_{8}$ type $(23,24)$, we obtain very nearly

FIG. 4. A plot of $f_{\text {oct }}$, the proportion of M sites with octahedral surroundings, versus q for type I and type II structures.
the following equation for type I structures:

$$
\begin{equation*}
f_{\mathrm{oct}}=2 q-1 \tag{4}
\end{equation*}
$$

Similarly, data from $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$ and $\mathrm{Nb}_{3} \mathrm{O}_{7} \mathrm{~F}(\mathrm{hp})$ give

$$
\begin{equation*}
f_{\mathrm{oct}}=-4 q+3 \tag{5}
\end{equation*}
$$

for type II structures. A plot of Eqs [4] and [5] for the data of Table 1 (i.e., $f_{\text {oct }}$ taken from the models and q values calculated from powder patterns) is shown in Fig. 4. The graphs are both linear to a fairly good approximation, implying that knowledge of the magnitude of the wave vector can be used for estimating the distribution of seven- and six-coordinated metal atoms in structures of types I and II.

CONCLUSION

This study of $\mathrm{L}-\mathrm{Ta}_{2} \mathrm{O}_{5}$-related structures is chiefly based on published X-ray powder diffraction data for the compounds concerned. Using these data we have in each case identified and refined a basic subcell of Lehovec type. We have then assumed the presence of a commensurate modulation wave vector along the \mathbf{b}^{*} direction. The unit cell dimensions, including the magnitude of the modulation vector q, with standard deviations of the subcell, were obtained from Eq. [1]. It was found that $q<2 / 3$ for type I and $q>2 / 3$ for type II structures and that q equals $2 / 3$ for a subcell of $\beta-\mathrm{U}_{3} \mathrm{O}_{8}$ type like that of $\mathrm{Nb}_{3} \mathrm{O}_{7} \mathrm{~F}(\mathrm{hp})$.

The apparent multiplicity m^{\prime} as defined in Eq. [2] depends on q as shown in Eq. [3] for both structure types.

In order to describe the structures concerned, a new kind of module $(A B)$, with $M_{3} X_{8}$ composition and with seven-coordinated metal atoms, has been introduced. It correctly depicts the $\alpha-\mathrm{U}_{3} \mathrm{O}_{8}$-type structure, which appears to be an integral part of these phases. Using the modules A, B, and $(A B)$, it is found that structures of types I and II can be represented by
$M_{4 n+4}^{[7]} M_{2 n}^{[6]} X_{16 n+10}, n=1,2,3 \ldots$ and $M_{4 n+4}^{[7]} M_{2 n-2}^{[6]} X_{16 n+6}$, $n=1,2,3 \ldots$, respectively, and that $M_{4}^{[7]} M_{2}^{[6]} X_{16}$, a subcell of $\beta-\mathrm{U}_{3} \mathrm{O}_{8}$ type, is the limiting structure at $n=\infty$ in both cases.

The proportion, $f_{\text {oct }}$, of metal atoms with octahedral surrounding that can be derived from the series above agrees with what is known from X-ray single-crystal structure investigations of $\mathrm{Ta}_{74} \mathrm{~W}_{6} \mathrm{O}_{203}$ (20), $\mathrm{Ta}_{22} \mathrm{~W}_{4} \mathrm{O}_{67}$ (20), $\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$ (17), and $\mathrm{Nb}_{3} \mathrm{O}_{7} \mathrm{~F}(\mathrm{hp})$ (24). Finally, it is shown that $f_{\text {oct }}$ depends on q as given by Eqs. [4] and [5] and as illustrated in Fig. 4. $\mathrm{U}_{5} \mathrm{O}_{12} \mathrm{Cl}$ is an exception, with $f_{\text {oct }}=0$, presumably due to the presence of the large Cl atom.

ACKNOWLEDGMENTS

The author is indebted to Professor Lars Kihlborg and Dr. Margareta Sundberg for their comments on the present paper.

REFERENCES

1. R. Moser, Schweiz. Mineral. Petrog. Mitt. 45, 35 (1965).
2. R. S. Roth and N. C. Stephenson, "Chemistry of Extended Defects in Non-Metallic Solids" (L. Eyring and M. O'Keefe, Eds.), p. 167. North-Holland, Holland, Amsterdam, 1970.
3. Roth and J. L. Waring, J. Res. Natl. Bur. Stand. A 74, 485 (1970).
4. R. S. Roth, J. L. Waring, and H. S. Parker, J. Solid State Chem. 2, 445 (1970).
5. P. J. England and R. J. D. Tilley, Chem. Scr. 24, 130 (1984).
6. J. M. Williams, R. J. D. Tilley, G. Harburn, and R. P. Williams, J. Solid State Chem. 92, 460 (1991).
7. S. Schmid, R. L. Withers and J. G. Thompson, J. Solid State Chem. 99, 226 (1992).
8. T. Miyano, J. Solid State Chem. 126, 208 (1996).
9. R. Papiernik, B. Gaudreau, and B. Frit, J. Solid State Chem. 25, 143 (1978).
10. R. Papiernik, B. Frit, and B. Gaudreau, Rev. Chim. Miner. 23, 400 (1986).
11. B.-O. Marinder, Acta Chem. Scand. 44, 123 (1990).
12. J. G. Thompson, R. L. Withers, and C. J. Kepert, J. Solid State Chem. 95, 111 (1991); R. L. Withers, S. Schmid and J. G. Thompson, Prog. Solid State Chem. 26, 1 (1998).
13. K. Lehovec, J. Less-Common Met. 7, 397 (1964).
14. PDF $27-1313 \mathrm{~T}-\mathrm{Nb}_{2} \mathrm{O}_{5}$.
15. B. O. Loopstra, Acta Crystallogr. 17, 651 (1964).
16. K. Kato and S. Tamura, Acta Crystallogr. B 31 (1975) 673.
17. B. Holmberg, Acta Crystallogr. B 26 (1974) 830.
18. G. Harburn, R. J. D. Tilley and R. P. Williams, Philos. Mag. A 68, 633 (1993).
19. M. O'Keeffe and B. G. Hyde, Phil. Trans. R. Soc. London A 295 (1980) 553.
20. S. Schmid, J. G. Thompson, D. Rae, B. D. Butler, and R. L. Withers, Acta Crystallogr. B 51, 698 (1995); A. D. Rae, S. Schmid, J. G. Thompson, and R. L. Withers, Acta Crystallogr. B 51, 709 (1995); S. Schmid, F. Futterer, and J. G. Thompson, Acta Crystallogr. B 52, 223 (1996).
21. E. H. P. Cordfunke, P. van Vlaanderen, K. Goubitz, and B. O. Loopstra, J. Solid State Chem. 56, 166 (1985).
22. P. N. W. Ilunga and M. Sundberg, Mater. Res. Bull. 19, 807 (1984).
23. K.-A. Wilhelmi, S. Andersson, and Lena Jahnberg, Acta Chem Scand. 24, 1472 (1970).
24. L. Jahnberg, Chem. Commun. Univ. Stockholm 17 (1971).
